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ABSTRACT

Security has grown in importance as a study issue in recent years. Several cryptographic 
algorithms have been created to increase the performance of these information-protecting 
methods. One of the cryptography categories is a hash function. This paper proposes the 
implementation of the SHA-256 (Secure Hash Algorithm-256) hash function. The unfolding 
transformation approach was presented in this study to enhance the throughput of the SHA-
256 design. The unfolding method is employed in the hash function by producing the hash 
value output based on modifying the SHA-256 structure. In this unfolding method, SHA-
256 decreases the number of clock cycles required for traditional architecture by a factor of 
two, from 64 to 34 because of the delay. To put it another way, one cycle of the SHA-256 
design can generate up to four parallel inputs for the output. As a result, the throughput of the 
SHA-256 design can be improved by reducing the number of cycles by 16 cycles. ModelSim 
was used to validate the output simulations created in Verilog code. The SHA-256 hash 
function factor four hardware implementation was successfully tested using the Altera 
DE2-115 FPGA board. According to timing simulation findings, the suggested unfolding 
hash function with factor four provides the most significant throughput of around 4196.30 
Mbps. In contrast, the suggested unfolding with factor two surpassed the classic SHA-256 

design in terms of maximum frequency. As a 
result, the throughput of SHA-256 increases 
13.7% compared to unfolding factor two and 
58.1% improvement from the conventional 
design of SHA-256 design. 
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INTRODUCTION

Cryptography is the study of encrypting messages such that only the intended recipient may 
read them. Cryptographic algorithms are divided into symmetric cryptography, asymmetric 
cryptography, and hash functions. Asymmetric cryptography employs two separate keys 
to encrypt and decrypt the message, whereas symmetric cryptography utilizes only one 
key. The SHA-256 design was the subject of this investigation with no key. Instead, the 
hash value of a variable-length message was converted to a fixed-length text hash value. 
Hash functions include various types such as SHA (Secure Hash Algorithm) family, MD5 
(Message Digest 5), SHA-1 (Secure Hash Algorithm 1), RIPEMD-160 (RACE Integrity 
Primitives Evaluation Message Digest 160), and other types.

The hash value results from a hash function where the input depends on the user, which 
leads to output for a specific algorithm. The hash code is only obtained once the one-way 
property receives the message input. It is impossible to reverse the process of obtaining 
the message from the hash code. When the output hash codes M1 and M2 are identical in 
the second preimage, finding the message M2 is challenging. Finally, collision resistance 
occurs when two separate messages and two hash function messages digest. Finding the 
same hash code H(M1) = H(M2) with two different messages is tough.

One of the approaches for obtaining a new program that runs more than one iteration 
of the original program is to utilize an unfolding algorithm. The unfolding factor defines 
the number of iterations in the original program. This methodology is used to increase 
the performance of the SHA-256 design (Suhaili & Watanabe, 2017). The architecture 
is referred to as Register Transfer Level, and this strategy focuses on the latency of the 
designs (RTL). Unfolding transformation factors 2 and 4 were implemented in this paper 
to minimize the latencies of the SHA-256 hash function. (Parhi, 1999). Both designs were 
carried out in parallel. The area, on the other hand, grew dramatically. Much research has 
been done related to SHA-256 using both ASIC and FPGA implementation (Shahid et al., 
2011; Sun et al., 2007; Sklavos & Koufopavlou, 2003; Miao et al., 2009; Mestiri et al., 
2015; Chaves et al., 2006; McEvoy et al., 2006; Ahmad & Das, 2005; Padhi & Chaudri, 
2017; Kahri et al., 2015; Michail et al.,2010; Michail et al., 2005; Phan et al., 2021; Kester 
& Henry, 2019; Bensalem et al., 2021; He et al., 2018; Zhang et al., 2019; Wu et al., 2020; 
Li et al., 2019; Li et al., 2020; Brazhinikov, 2020; Chen & Li, 2020).

The inner pipelining with the unfolding of SHA-256 hash functions were designed 
in this study. Based on Arria II GX, these algorithms were synthesized and implemented. 
ModelSim was used to verify the simulation results. The following is a breakdown 
of the structure of the paper: Section 2 presents the proposed SHA-256 design. The 
implementation results are detailed in Section 3, along with a comparison of alternative 
SHA-256 solutions. The conclusions are discussed in the final part.
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RELATED WORKS

SHA-2 hash function consists of four different hash functions such as SHA-224, SHA-256, 
SHA-384, and SHA-512. The output length of these hash algorithms depends on the SHA-
2 size ranging from 224 to 512-bit. This paper only focused on the SHA-256 algorithm 
because of the extension from the SHA-1 algorithm. In addition, previous SHA-256 was 
implemented using different types of FPGA devices. 

Miao et al. (2009) designed and implemented SHA-1, SHA- 224, SHA-256, SHA-384, 
and SHA-512 cryptographic chip on EP2S15F484C3 of Stratix II. These designs were 
written using Verilog code. Modelsim 6.0c simulator tool was used to simulate and verify 
the design. From this result, SHA-256 provided 143.16 MHz of maximum frequency and 
909.8 Mbps of throughput. In this design, Carry Save Adder (CSA) and Carry Lookahead 
Adder were implemented into the SHA-256 design to increase execution speed (Miao et 
al., 2009). Sklavos and Koufopavlou (2003) proposed SHA-256 designs with 83 MHz of 
maximum frequency and 326 Mbps of throughput. This design was implemented on Xilinx 
Virtex v200pq240. From this result, the maximum frequency of the SHA-256 algorithm 
slightly decreases compared with the previous design. This design can be applied efficiently 
to implement digital signature algorithms, keyed-hash message authentication codes, and 
random numbers generators architectures (Sklavos & Koufopavlou, 2003).

Ahmad and Das (2005) proposed two types of SHA-2, such as SHA-256 and SHA-
512 algorithms. These algorithms were designed and tested based on the Altera Quartus II 
CAD tool. This paper does not mention which specific programming is used to design and 
implement the SHA-256 algorithms. Overall, the designs were analyzed and synthesized 
using Verilog HDL and VHDL, placed and routed in Altera devices of APEX II, Stratix, 
and Mercury family FPGAs. The maximum frequency of SHA-256 designs was 41.97 
MHz (Ahmad & Das, 2005). The maximum frequency of the SHA-256 algorithm decreased 
significantly compared with other designs. 

McEvoy et al. (2006) designed six SHA processors using VHDL and implemented 
them on Xilinx Virtex II xc2v2000-bf957. For SHA-256, one processor had a basic quasi-
pipelined core, one had a 2x-unrolled core, and another had a 4x-unrolled core (McEvoy et 
al., 2006). These techniques have been proposed to speed up the calculations in the SHA 
core; Carry Save Adder (CSA), unrolling, quasi-pipelining, which use register break the 
long critical path within the SHA core, Block RAM, and parallel counter. From the results, 
unrolled SHA-256 provided low latency compared with the basic design. However, the 
basic SHA-256 design gave 133.06 MHz of the maximum frequency with 1009 Mbps of 
throughput.

Chaves et al. (2006) has improved the performance of SHA-2 algorithms. SHA-256 
was implemented on Xilinx VIRTEX II Pro (XC2VP30-7) and provided 174 MHz of 
maximum frequency. This design proposed a rescheduling technique that efficiently uses 
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a pipelined structure without increasing area and hardware reutilization methods to enable 
resource-saving. The results showed that the maximum frequency of SHA-256 was 174 
MHz with 1370 Mbps of throughput (Chaves et al., 2006). Sun et al. (2007) proposed 
SHA-2 (256, 384, 512) designs, and the algorithms were written using Verilog code. These 
designs were simulated and verified using ModelSim 6.0a. The target FPGA device for 
these designs was the same as the device in Sklavos paper, Xilinx Virtex v200pq240-6. 
The method of SHA-256 was based on Carry Lookahead Adder (CLA) and Carry Save 
Adder (CSA). This technique tried to improve the critical path of the design. However, 
the results showed that the maximum frequency of SHA-256 decreased significantly and 
only gave 74 MHz with 291 Mbps of throughput (Sun et al., 2007). 

Shahid et al. (2011) introduced different hash function algorithms modeled using 
VHDL. Xilinx and Altera Quartus II were used to synthesize and implement these designs. 
The designs were divided into: basic and embedded with DSP units and block RAMs. 
The use of embedded FPGAs resources in the implementation of SHA-2 provided high 
frequency compared with basic designs. The maximum frequency of SHA-2 increased 
significantly on Virtex 5 and Stratix III with 218.2 MHz and 205.8 MHz, respectively 
(Shahid et al., 2011). Kahri et al. (2015) focused on both SHA-256 and SHA-512 designs. 
The designs showed the results based on a finite state machine with a padded process unit. 
The FSM performed five states: pad 0, pad 1, pad 2, pad 3, and pad F. The SHA-256 design 
gave 202.54 MHz of maximum frequency 1.58 Gbps of throughput (Kahri et al., 2015).

Padhi and Chaudhari (2017) designed the optimized pipelined architecture of the 
SHA-256 hash function. The design has been implemented on Xilinx Virtex-4 FPGA 
using Verilog HDL code. In this design, CSA was used to enhance the performance of 
architecture.  The maximum frequency of the design was 170.75 MHz with a throughput 
of 1344.98Mbps (Padhi & Chaudhari, 2017). Michail et al. (2005) proposed an SHA-256 
design with 64.1 MHz with 2052.1 MHz. This design was implemented on Virtex E using 
the pre-computation technique to improve design throughput (Michail et al., 2005). Michail 
et al. (2010) improved the throughput of optimized SHA-256 design using VHDL based 
on Virtex FPGA implementation. This design uses partially unrolled operation with pre-
calculation and pre-computation. Besides, CSA also is applied in this design to increase 
the throughput of design (Michail et al., 2010). 

He et al. (2018) proposed the SHA-256 design using a three-stage pipeline using 
Cyclone II FPGA implementation. The throughput obtained for the design was 655.66 
MHz with a masking scheme (He et al., 2018). Next, Zhang et al. (2019) and Wu et al. 
(2020) proposed the SHA-256 design with ASIC implementation. Both inventions have 
been implemented and synthesized with 14nm technology (Zhang et al., 2019; Wu et al., 
2020). Finally, Li et al. (2019) proposed an asynchronous SHA-256 implementation design 
in SMIC 40nm technology. The result of the design was simulated and verified using 
Synopsys VCS (Li et al., 2019). 
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Li et al. (2020) proposed an FPGA-based implementation that gave the implementation 
results with 100 MHz and 787 Mbps of throughput. This design used neural network and 
blockchain fusion-based image copyright protection and implemented DNN and SHA-
256 on FPGA (Li et al., 2020). Brazhnikov (2020) proposed SHA2 with 28nm CMOS 
technology. This design produced different results by applying different adder types to 
the SHA-256 design, such as RCA, CLA, Han-Carlson, Brent-Kung, Kogge Stone, and 
Sklansky, in terms of delay and area (Brazhnikov, 2020). There is no information related to 
Maximum frequency and throughput in this paper. The performance of SHA-256 in terms 
of high-throughput was the main objective of this paper. Chen and Li (2020) proposed a 
rescheduling method to enhance the throughput. This design was implemented on Virtex-4 
with a throughput of 1984 MHz with an area of 979 slices (Chen & Li, 2020). 

Bensalem et al. (2021) proposed the latest implementation to improve throughput. 
Bensalem improved the SHA-256 design implementation on FPGA using OpenCL 
optimization techniques. These optimization techniques include inserting local memories, 
loop splitting, loop unrolling, and loop pipelining. This design obtained a throughput of 
3973 Mbps (Bensalem et al., 2021). These designs were the previous implementation of 
SHA-256 based on ASIC and FPGA implementation. In this paper, the improvement of 
throughput of the SHA-256 hash function was designed and implemented on FPGA to 
improve the performance by using unfolding transformation techniques. Table 1 depicts a 
simplified version of the prior SHA-256 design and the proposed SHA-256 design.

Table 1
Previous design of SHA-256 algorithm and proposed SHA-256 design

No. Authors / year Device Design Method
1 Miao et al. (2009) Stratix II–FPGA 

Implementation
• Iterative CSA and 

CLA 
2 Sklavos and Koufopavlou 

(2003)
Xilinx Virtex v200pq240–
FPGA Implementation

• Iterative

3 Ahmad and Das (2005) APEX II, Stratix, and 
Mercury family FPGAs–
FPGA Implementation

• Iterative

4 McEvoy et al. (2006) Xilinx Virtex II xc2v2000-
bf957–FPGA Implementation

• CSA Quasi-
pipelining

5 Chaves et al. (2006) Xilinx VIRTEX II Pro 
(XC2VP30-7)–FPGA 
Implementation

• Pipelining
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Table 1 (Continue)

No. Authors / year Device Design Method
6 Sun et al. (2007) Xilinx Virtex v200pq240-6–

FPGA Implementation
• Iterative CSA and CLA 

7 Shahid et al. (2011) Virtex 5 and Stratix III–
FPGA Implementation

• Iterative

8 Padhi and 
Chaudhari (2017)

Xilinx Virtex-4–FPGA 
Implementation

• Iterative

9 Michail et al. 
(2005)

Virtex E–FPGA 
Implementation

• Iterative (pre-computation 
technique)

10 Michail et al. 
(2010)

Virtex–FPGA 
Implementation

• Iterative partially unrolled 
operation CSA

11 He et al. (2018) Cyclone II–FPGA 
Implementation

• Three-stage pipeline

12 Zhang et al. (2019) ASIC Implementation • Iterative
13 Wu et al. (2020) ASIC Implementation • Iterative
14 Li et al. (2020) FPGA–FPGA 

Implementation
• Iterative neural network 

blockchain fusion
15 Brazhnikov (2020) 28nm CMOS technology • Iterative RCA, CLA, 

Han-carlson, Brent-
Kung, Kogge Stone and 
Sklansky

16 Chen and Li (2020) Virtex-4–FPGA 
Implementation

• Iterative (rescheduling 
method)

17 Bensalem (2021) FPGA Implementation
ASIC Implementation

• OpenCL optimization 
techniques loop splitting, 
loop unrolling, and loop 
pipelining

18 Proposed SHA-256 
Design

Arria II GX–FPGA 
Implementation

• Iterative

19 Proposed SHA-256 
Unfolding Design 
(factor 2)

Arria II GX–FPGA 
Implementation

• Unfolding factor two

19 Proposed SHA-256 
Unfolding Design 
(factor 4)

Arria II GX and Cyclone IV-
-FPGA Implementation

• Unfolding factor four
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MATERIALS AND METHODS

These designs were developed to improve throughput performance. SHA-256 was created 
using Verilog code. The counter SHA-256 module and the other five modules are modules 
inside this design architecture. The structure of the modules inside the SHA-256 unfolding 
design is the distinction between two different types of SHA-256 designs. The sequence of 
constants and messages was identified to be altered when other inputs were used. For input, 
15 blocks of 32-bit data were added. Equation 1 was used in this design for the message, tW .
SHA-256 message, Wt

=tW  message input                                          0 ≤ t ≤ 15
1615

256
072

256
1 )()( −−−− +++= ttttt WWWWW σσ              16 ≤ t ≤ 63               [1]

Where,
)()()()( 3187256

0 xSHRxROTRxROTRx ++=σ                                        [2]
)()()()( 101917256

1 xSHRxROTRxROTRx ++=σ                                       [3]

Equations 2 and 3 were used to generate both functions. The rotation value for x value 
is shown in Equation 2 for sigma_0. While for Equation 3, sigma 1 can be obtained by 
rotating the message x with the value given in Equation 3. It was divided into two portions 
for the compression function, Temp1 and Temp2. Ch and Σ1 make up Temp1, while maj and Σ0 

make up Temp2. The equations for summation 0 and summation 1, namely Σ0 and Σ1 are 
shown in Equations 4 and 5. The number of rotation inputs a and e will be based on the 
number specified in the equations, just like sigma 0 and sigma 1.

)()()()( 22132
0

aROTRaROTRaROTRa ++=∑                                          [4]
)()()()( 25116

1
eROTReROTReROTRe ++=∑                             [5]

The message sequence was generated using a counter module. The final module was 
developed after finishing all rounds of iteration by the SHA-256 hash algorithm. Before 
SHA-256 began processing the message, a Multiplexer module assisted in generating eight 
buffer initializations. 64X32-bit ROM blocks were used to define the constant Kt. Finally, 
the output module was used to create the SHA-256 message digest. In this model, the final 
output of the SHA-256 compression function was combined with buffer initialization.

Modifications must be made to each module to improve the performance of the 
throughput SHA-256 design. For example, two 32-bit parallel inputs with constants were 
required for the factor two design. Similarly, four parallel 32-bit inputs and four parallel 
constants were needed in this design. As a result, all information for the following sequence 
cycle must be changed. Each of the inputs modules has to be changed to achieve this 
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method. Figure 1 shows the flowchart for this design. It starts with a compilation of RTL 
designs. Then, the design was evaluated using both functional and timing simulation with 
both design and testbench file of SHA-256 hash function algorithm before download to 
FPGA hardware design. 

Figure 1. SHA-256 flowchart design

The SHA-256 hash function was improved as a result of these changes. The latency is 
shortened dependent on the factor J using an unfolding design methodology (Parhi, 1999). 
Furthermore, this method improves the throughput of the design. For unfolding factor two, 
the latency reduces to 46.4% from the traditional design, and for unfolding factor four, the 
percentage reduces around 45.1%. The number of latencies was calculated final results. It 
was decreased as the design architecture unfolded and changed in response to varied inputs.

In addition, based on modification on modules inside the design, the frequency 
performance of the design has increased. Compared to the usual design, the frequency of 
unfolding design rose dramatically with factor two. Compared to two other designs, the 
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modification of the unfolding method had a large area implementation. However, because 
of the short latencies, it allowed for high throughput.

The SHA-256 algorithm adjusted message schedule and compression function created 
the unfolding factor 2 and 4 architecture. This paper used the unfolding technique with factors 
two and four. Modifications to two modules must be considered. Therefore, it is necessary 
to consider the alterations to these two modules in the design. The block diagrams of Temp10 

and Temp20 are shown in Figures 2 and 3. The following block diagrams and ∑ o1  show how 
they differed from traditional Temp1 and Temp2. The output of the unfolding design was remade 
in a different order, with different results. These equations have the SHA-256 algorithm 
compression function added to them. Σ10, ),,_( feenextCho , Message, 1_tW and Constant, 

1_tK  are found in oTemp1 , whereas o∑ 0  and ),,_( baanextMajo  are found in oTemp2 . A 32-bit 
adder was used to achieve these results. The oTemp1 and oTemp2  block diagram design has a 
different set of data inputs.

Figure 3. Architecture of Temp10 block diagram

The two architectures inside Temp10 and Temp20  are shown in Figures 4 and 5. The different 
types of gates are used in both architectures with different location topologies. Both Figures 
4 and 5 show that the data inputs differ from the standard function for Cho and Majo. From 
Figures 4 and 5, it is clearly shown that the new data inputs are applied.

Figure 2. Architecture of Temp10 block diagram
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Figure 4. Architectures of Cho Function

Figure 5. Architectures of Majo Function

The proposed block diagram for summation_0o and summation_1o are shown in 
Figures 6 and 7, respectively. The input next_a was used to represent, whereas next_e was 
used to represent. With a fixed number of values, all rotations in both designs followed the 
right direction. Finally, using an XOR gate to combine all inputs, the final outputs o∑0
and ∑ o1 were achieved.

Figure 6. Architecture of ∑ o enext1 )_(
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Figure 7. Architecture of ∑ o enext1 )_(

New next_eo and next_ao were calculated using output oTemp1  and oTemp2 . Equations 6 
and 7 below show the new output value signal.

next_eo = c + oTemp1               [6]
next_ao = oTemp1  + oTemp2                                                       [7]

Figures 8 and 9 illustrate the revised inner architecture for Temp11 and Temp21. These 
two inputs, Ch1 and Maj1 from Figures 8 and 9, are all presented with distinct signals. It 
is due to factor 4 of the unfolding technique. Similarly, function Σ11 and Σ01 also use new 
input to be applied in the new architecture of Temp1 and Temp2. The new equations can be 
derived from Equations 8 and 9 below by applying the new inputs signal to both equations. 

Figure 8. Architecture of Temp11 block diagram

Figure 9. Architecture of Temp21 block diagram 
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The unfolding factor four was calculated until Temp12 and Temp22 since it required 
four parallel executions.

Figure 10. Architecture of Temp12 block diagram 

Figure 11. Architecture of Temp22 block diagram 

Figures 10 and 11 illustrate the new output for both Temp functions. In both function 
Σ12 and Σ02, two new signal inputs are employed. In addition, the data was relocated to the 
same place in the input sequence as the one before it. Both Figures 10 and 11 demonstrate 
these data inputs.

The new signals for Equations 10 and 11 were derived from the Temp12 and Temp22 
datasets. The output of next_e2 and next_a2 are shown in the equation below.

next_e2 = a + Temp12                                                                [10]
next_a2 = Temp12 + Temp22                                                       [11]

The message schedule was modified from prior results in the same way the compression 
algorithm was. The modification of the previous equation for sigma0 and sigma1 was 
processed after receiving the signal. The start of this sequence was at wt2 and concluded 
at wt15.

Figures 12 and 13 depict the architectures for the o0σ  and o1σ  functions, respectively. 
The fundamental role of these architectures is to generate the SHA-256 message schedule. 
A constant quantity of value was used to rotate 2W  in the appropriate direction for o0σ , 
whereas for o1σ , new data input was used. The 2W  was right-shifted with a specific value 
in o0σ  function, and similarly with the W15. It was right-shifted in o1σ  function with a 
certain value.
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Figure 13. Architecture of
 
σ1o

With input W3 and next wt, σ01 and σ11were computed for unfolding factor 4. The following 
Equation 12 was used to calculate next_wt1.

next_wt1 = W2 + σ01 + W11 + σ11                                                [12]

Finally, input W4 and next_wto were used to generate the input for σ02 and σ12. Figure 
13 was used to create the next_wto. Figure 14 depicts the structure of next_ wt2 and the 
overall design of unfolding factor 4 for the message schedule. Message input of Wo data 
began with W4 and ended with W15. The output sequence of next_wt used in unfolding 
factor four uses the similar method used in factor two. 

Figure 15 illustrates an SHA-256 hash function with an FPGA implementation 
design. In this phase, functional simulation is used to check the results of the invention. 
First, Verilog code needs to be converted into gate-level based on an FPGA family device 
chosen in the early phase of the design. Then, the compilation and synthesis process will be 
executed to translate the Verilog code into a netlist to represent the actual hardware device. 
Logic synthesis tools play important roles in digital electronic design automation. After the 
synthesis process, timing simulation needs to be evaluated in terms of time setup and time 
hold of the output waveform. Finally, the design can be downloaded to the FPGA device.

Figure 12. Architecture of σ0o
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Figure 15. FPGA implementation flow of SHA-256 design

Figure 14. SHA-256 unfolding factor 4 message schedule
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RESULTS AND DISCUSSION

The proposed SHA-256 unfolding factors two and four have been successfully developed 
and tested. The Altera Quartus II was used to compile all of the designs written in Verilog 
code. The functionality of the design was simulated and verified using ModelSim in terms 
of timing and functional simulation. Finally, the throughput of these designs was calculated 
using Equation 13.

Throughput = (512 X FMax) / Number of Cycle                  [13]

Table 2 shows a comparison of the proposed SHA-256 designs with previous 
publications. The design throughput increased significantly by using this unfolding method 
compared to previous design configurations. Most of the previous SHA-256 algorithms 
were applied the iterative and pipelining method to design the hash function. Therefore, the 
area implementation of the designs was smaller than the unfolding method. The unfolding 
method employs a parallel operation based on the number of unfolding factors. According 
to the data in Table 2, the unfolding SHA-256 design with factor four design had the highest 
throughput of all the SHA-256 designs. 

Table 2 summarizes the findings of other designs. Iterative and pipelining approaches 
were applied to the prior SHA-256 algorithm using this table. Different adders, such as CSA 
and CLA, were applied to the iterative process in the preceding SHA-256 design. Unrolled 
pipelining was employed in the SHA-256 design of the pipelining method. As a result, three 
types of SHA-256 algorithms have been proposed to increase the throughput of SHA-256 
design: iterative SHA-256 design, unfolding SHA-256 with factor two, and unfolding 
SHA-256 with factor four. When an unfolding transformation is applied to the SHA-256 
algorithm, the design operation improves dramatically because the design is handled in 
parallel. By minimizing the number of latencies, this strategy can assist in enhancing the 
performance of SHA-256 designs. Different devices produced different results when the 
SHA-256 design was implemented. As a result, better results can be obtained by selecting 
an appropriate family device for implementation. 

Table 2
Other SHA-256 design results in synthesis and implementation comparison

SHA-256 Hash Function Area Device FMax Throughput
Proposed SHA-256 
Design

855 ALUTs Arria II GX 228.15 
MHz

1756.58 Mbps
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Table 2 (Continue)

SHA-256 Hash Function Area Device FMax Throughput
Proposed SHA-256 
unfolding design factor 2

1345
ALUTs

Arria II GX 251.07 
MHz

3621.07 Mbps

Proposed SHA-256 
unfolding design factor 4

2064 
ALUTs

Arria II GX 159.82 
MHz

4196.30 Mbps

SHA-2
(Shahid et al., 2011)

320 CLBs Virtex 5 218.2 MHz 1719 Mbps

SHA-2
(Shahid et al., 2011)

795 ALUTs Stratix III 205.8 MHz 1621 Mbps

SHA(256,384,512)
(Sun et al., 2007)

2207 CLBs Virtex 
v200pq 240-6

74 MHz 291 Mbps

SHA-256
(Sklavos & Koufopavlou, 
2003)

1060 CLBs Virtex 
v200pq240

83 MHz 326 Mbps

SHA-256 (Miao et al., 
2009)

2150 
ALUTs

Stratix II 143.164 
MHz

909.816 Mbps

SHA-256
(Mestiri et al., 2015)

387 Slices Virtex 5 
XC5VFX70T

202.54 
MHz

1580 Mbps

SHA-256
(Chaves et al., 2006)

755 Slices XC2PV-7 174 MHz 1370 Mbps

SHA-256
(MeEvoy et al., 2006)

1373 Slices Virtex-II 
xc2v2000-
bf957

133.06 
MHz

1009 Mbps

SHA-256
(Ahmad & Das, 2005)

- - 41.97 MHz 335.9 Mbps

SHA-256
(Padhi & Chaudhari, 2017)

610 Slices Virtex-4 170.75 
MHz

1344.98 Mbps

SHA-256
(Kahri et al., 2015)

387 Slices Virtex-5 
XC5VFX70T

202.54 
MHz

1580 Mbps

SHA-256
(Michail et al., 2010)

1534 CLBs Virtex 35.1 MHz 2077 Mbps

SHA-256
(Michail et al., 2010)

1655 CLBs Virtex E 36.4 MHz 2190 Mbps

SHA-256
(Michail et al., 2005)

- Virtex E 64.1 MHz 2052.1 Mbps

SHA-256
(Phan et al., 2021)

1895 slice/
LUT

Virtex 5 411.3 MHz 3290.4 Mbps

SHA-256
(Bensalem et al., 2021)

67150 LU Arria10 243 MHz 3970 Mbps
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The proposed design used 855 ALUTs and had a maximum clock frequency of 228.15 
MHz. Thus, the performance of the proposed design was improved significantly by using 
this technique. According to the results, the proposed design had the highest throughput, 
with 4196.30 Mbps and a maximum frequency of 159.82 MHz due to the internal pipelining 
design, which used 1159 registers. Compared to traditional architecture, this technique 
enhanced the design by eliminating round cycles. As a result, the clock cycle count of 
the SHA-256 unfolding architecture dropped from 66.5 to 19.5 cycles. The hash function 
design of SHA-256 with excellent throughput was accomplished using the unfolding 
transformation approach.

The proposed unfolding SHA-256 design can improve the performance of the hash 
function design. The design frequency can be considerably increased by employing the 
unfolding method and following the criteria for developing better HDL coding. In addition, 
the architecture of the FPGA device plays a vital part in the SHA-256 design. Thus, the 
performance of the SHA-256 design can be improved by identifying the appropriate FPGA 
device. The earlier implementation of the SHA-256 design is shown in Table 2. Due to 
budget and device constraints, it is difficult to locate the same device for the same design. 
The area implementation of the design increases from iterative design to unfolding design, 
as shown in this table. The throughput of the SHA-256 unfolding with factor four design, on 
the other hand, greatly increases. SHA-256 improves throughput by 13.7 percent compared 
to unfolding factor 2 and by 58.1 percent compared to the traditional SHA-256 design. Figure 
16 shows the timing simulation results for the conventional method of SHA-256 design 
with 64 cycles to generate the final output result. The output of SHA-256 hash function 
represents by eight 32-bit signal output of {Ha0, Ha1, Ha2, Ha3, Ha4, Ha5, Ha6, Ha7} with 
the value output of “ba7816bf8f01cfea41410de5dae2223b0036177a9cb410ff61f20015ad”.

Table 2 (Continue)

SHA-256 Hash Function Area Device FMax Throughput
SHA-256 (He et al., 2018) 7219 Cells Cyclone II 116.2 MHz 875.22 Mbps
SHA-256- cascade
(Li et al., 2019)

- SIMC 40nm 
technology 
(Synopsys)

227.27 
MHz

3600 Mbps

SHA-256 (Li et al., 2020) - Alpha-Data 
ADMPCIE-
7V3

100 MHz 787 Mbps

SHA-256
(Chen & Li, 2020)

979 Slices Virtex 4 255.7 MHz 1984 Mbps
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Figure 16. Timing simulation waveform of SHA-256 design

According to Equation 13, the number of cycles for unfolding SHA-256 with factor 
two is lowered by two, from 64 to 32, as shown in Figure 17. Due to the clock delay in the 
timing simulation, the number of cycles given in this simulation waveform was 34. Then 
there will be an increase in throughput of the SHA-256 design. 

Figure 17. Timing simulation waveform of unfolding SHA-256 with factor two design
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Similarly, the cycles of unfolding SHA-256 factor four will decrease by four, bringing 
the total number of cycles down from 64 to 18. The throughput and performance of the 
SHA-256 design can benefit from a minimal number of cycles. Figure 18 shows the timing 
simulation results for unfolding SHA-256 with factor four. Because of the concurrent 
processing that limits the input-output (I/O) FPGA pads, only 32-bit MSB final results 
are given in Figure 19(a).

Figure 18. Timing simulation waveform of unfolding SHA-256 with factor four design

The unfolding SHA-256 with factor four design has been downloaded into 
Cyclone IV E: EP4CE115F29C7 FPGA family device to verify the hardware 
implementation. The SHA-256 input in this particular instance is the text “abc.” 
As a result, the text output of the SHA-256 hash function for 256 bits should be 
“ba7816bf8f01cfea41410de5dae2223b0036177a9cb410ff61f20015ad”.

On the Cyclone IV E family device, Figures 19(a) and 19(b) show the hardware 
implementation of this hash function. The 32-bit MSB part of the output on the target 
device EP4CE115F29C7 is “ba7816bf.” The result was evaluated using seven segments, 
and three red LED bits, yielding 7 in decimal and “111” in binary. If the result of this hash 
function provides a correct output of 256 bits, the 3 LED outputs will appear 7 in decimal 
numbers, which is “111” in binary form. 
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Figure 19. (a) FPGA output implementation display (b) Hardware implementation of SHA-256 hash function

CONCLUSION

The high-performance design of the hash function is essential in security design. By applying 
this unfolding method with factor four to the SHA-256 hash function, the throughput of 
the design increase significantly. It is the best solution to improve the performance of the 
hash function. The maximum frequency of SHA-256 design implementation illustrates the 
critical path of the design. In order to obtain the high-performance design, the speed needs 
to be considered, thus leading to the high throughput of the SHA-256 design. ModelSim 
was used to simulate the SHA-256 design, then tested on an FPGA device for hardware 
implementation to verify the hash value output using six blocks of seven-segment and 3 
LEDs. The proposed SHA-256 unfolding factors two and four designs are comparable to 
other SHA-256 methods in the area and maximum frequency. From Table 2, based on the 
throughput of the previous SHA-256 design with iterative and pipelining, the proposed 
design with unfolding techniques produced the highest throughput of 4196.30 Mbps 
with factor four. It is clearly shown that by applying this unfolding method, the SHA-
256 design improves significantly in terms of design throughput because the number of 
latencies reduces four times. For conventional design and unfolding factor two, cycles 
decreases from 64 to 34. The number of cycles drops from 34 to 18 when the unfolding 
factor increases to four. As a result, when factor four is applied to the Unfolding SHA-256 
design, the throughput dramatically increases. The percentage improvement of SHA-256 
unfolding factor four was 13.7% and  58.1% compared to SHA-256 unfolding with factor 
two and conventional design of SHA-256, respectively. Compared to iterative design, the 
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proposed unfolding design had the drawback of large area implementation. This design, 
however, can be enhanced by combining pipelining and unfolding techniques to provide 
the greatest effect. This design is essential for security applications and could be used in 
future innovations, such as other hash functions, HMAC, and security applications.
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